skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rasmussen, Alexander J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study a skew product transformation associated to an irrational rotation of the circle$$[0,1]/\sim $$. This skew product keeps track of the number of times an orbit of the rotation lands in the two complementary intervals of$$\{0,1/2\}$$in the circle. We show that under certain conditions on the continued fraction expansion of the irrational number defining the rotation, the skew product transformation has certain dense orbits. This is in spite of the presence of numerous non-dense orbits. We use this to construct laminations on infinite type surfaces with exotic properties. In particular, we show that for every infinite type surface with an isolated planar end, there is aninfiniteclique of$$2$$-filling rays based at that end. These$$2$$-filling rays are relevant to Bavard and Walker’sloop graphs. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. We study the cone of transverse measures to a fixed geodesic lamination on an infinite type hyperbolic surface. Under simple hypotheses on the metric, we give an explicit description of this cone as an inverse limit of finite-dimensional cones. We study the problem of when the cone of transverse measures admits a base and show that such a base exists for many laminations. Moreover, the base is a (typically infinite-dimensional) simplex (called aChoquet simplex) and can be described explicitly as an inverse limit of finite-dimensional simplices. We show that on any fixed infinite type hyperbolic surface, every Choquet simplex arises as a base forsomelamination. We use our inverse limit description and a new construction of geodesic laminations to give other explicit examples of cones with exotic properties. 
    more » « less
  3. Abstract The set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. Following Abbott–Balasubramanya–Osin, the group is ‐accessibleif the resulting poset has a largest element. In this paper, we prove that every nongeometric 3‐manifold has a finite cover with ‐inaccessible fundamental group and give conditions under which the fundamental group of the original manifold is ‐inaccessible. We also prove that every Croke–Kleiner admissible group (a class of graphs of groups that generalizes fundamental groups of three‐dimensional graph manifolds) has a finite index subgroup that is ‐inaccessible. 
    more » « less
  4. Abstract Actions on hyperbolic metric spaces are an important tool for studying groups, and so it is natural, but difficult, to attempt to classify all such actions of a fixed group. In this paper, we build strong connections between hyperbolic geometry and commutative algebra in order to classify the cobounded hyperbolic actions of numerous metabelian groups up to a coarse equivalence. In particular, we turn this classification problem into the problems of classifying ideals in the completions of certain rings and calculating invariant subspaces of matrices. We use this framework to classify the cobounded hyperbolic actions of many abelian‐by‐cyclic groups associated to expanding integer matrices. Each such action is equivalent to an action on a tree or on a Heintze group (a classically studied class of negatively curved Lie groups). Our investigations incorporate number systems, factorization in formal power series rings, completions, and valuations. 
    more » « less
  5. The set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. The resulting poset thus gives rise to a notion of the “best” hyperbolic action of a group as the largest element of this poset, if such an element exists. We call such an action a largest hyperbolic action. While hyperbolic groups admit the largest hyperbolic actions, we give evidence in this paper that this phenomenon is rare for non-hyperbolic groups. In particular, we prove that many families of groups of geometric origin do not have the largest hyperbolic actions, including for instance many 3-manifold groups and most mapping class groups. Our proofs use the quasi-trees of metric spaces of Bestvina–Bromberg–Fujiwara, among other tools. In addition, we give a complete characterization of the poset of hyperbolic actions of Anosov mapping torus groups, and we show that mapping class groups of closed surfaces of genus at least two have hyperbolic actions which are comparable only to the trivial action. 
    more » « less